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I
nvestigation of nonparametric processes
concerning nonlinear absorption in tran-
sition metal dichalcogenides (TMDs) has

revealed a new category of photonic nano-
materials with potential applications in op-
tical switching, mode-locking, and optical
limiting.1�9 Unlike gapless graphene, mono-
layer TMDs possess a direct band gap. Com-
binedwith the advantage ofmonomolecular
layer thickness, the X�M�X sandwich struc-
ture, where M stands for a transition metal
(e.g., Mo, W, Ti, or Nb) and X stands for a
chalcogen (e.g., S, Se, or Te), behaves like
a natural semiconductor quantum well.
Electrons are closely confined in a two-
dimensional (2D) plane, implying significant
enhancement of optical nonlinearity in
these ultrathin semiconductors.10�16

In this paper, we show that monolayer
and few-layer WS2 and MoS2 films exhibit
strong two-photon absorption (TPA) for fem-
tosecond pulses at 1030 nm. The depen-
dence of the optical absorption nonlinearity

on the number of layers (WS2: 1�3 layers (L),
18�20L, 39�41L; MoS2: 25�27L, 72�74L)
and the excitation wavelength (1030, 800,
and 515 nm) was investigated. Saturation of
TPA was observed for the WS2 film with
1�3L and for the MoS2 film with 25�27L
at 1030 nm. According to a hyperbolic TPA
saturation model, the estimated TPA coeffi-
cient for the 1�3L WS2 film at 1030 nm was
deduced to be (1.0 ( 0.8) � 104 cm/GW,
much larger than that of common bulk
semiconductors such as GaAs, CdS, and
ZnO. This giant TPA coefficient was attrib-
uted to a 2D confinement of electrons, a
giant exciton effect, and the band edge
resonance of TPA.

RESULTS AND DISCUSSION

TheWS2 andMoS2 filmswere synthesized
by direct vapor phase sulfurization of
predeposited metal films in a quartz tube
furnace with two temperature zones as
reported previously.17,18 Thin metal films
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ABSTRACT The optical nonlinearity of WS2 and MoS2 monolayer and few-layer

films was investigated using the Z-scan technique with femtosecond pulses from

the visible to the near-infrared range. The nonlinear absorption of few- and

multilayer WS2 and MoS2 films and their dependences on excitation wavelength

were studied. WS2 films with 1�3 layers exhibited a giant two-photon absorption

(TPA) coefficient as high as (1.0( 0.8)� 104 cm/GW. TPA saturation was observed

for the WS2 film with 1�3 layers and for the MoS2 film with 25�27 layers. The

giant nonlinearity of WS2 and MoS2 films is attributed to a two-dimensional confinement, a giant exciton effect, and the band edge resonance of TPA.
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(W, Mo, 99.99% MaTecK) were sputtered onto fused
quartz substrates (∼10mm� 10mm, Alfa Aesar) using
a Gatan precision etching coating systemwith a quartz
crystal microbalance tomonitor theW orMo thickness.
Four types of samples with initial metal film thick-
nesses of 0.5, 1, 5, and 20 nm were prepared. They
were heated to 750 �C in the hot zone and annealed for
30 min under Ar flow. Then sulfur powder (MaTecK,
99%) in the upstream temperature zone was heated to
its melting point (∼113 �C), and the sulfur vapor was
transported to the predeposited metal films by the
carrier gas (Ar). After sulfurization, the samples were
held at 750 �C for 20 min and then cooled to room
temperature. Photographs of the WS2 and MoS2 films
(initial W or Mo layer thicknesses: 0.5, 5, and 20 nm) on
quartz substrates are shown in Figure 1a. The samples
with different thicknesses of predeposited metal films
are clearly distinguishable from each other. All samples
appear uniform over the entire area of ∼10 mm �
10 mm. Figure 1b,c shows the in-plane high-resolution
transmission electron microscopy (HRTEM) images of
WS2 and MoS2 films. In both images, the hexagonal
lattice structures reveal a good crystalline quality of
the samples. To determine the number of layers, we
utilized cross-sectional TEM for the thin samples (initial
W or Mo layer thickness: 0.5 and 1 nm) and spectro-
scopic ellipsometry (SE) for the relatively thick samples
(initialW orMo layer thickness: 5 and 20 nm). The cross-
sectional TEM images of WS2 (initial W: 0.5 and 1 nm)
and MoS2 (initial Mo layer thickness: 0.5 nm) films
were obtained by plasma etching and are shown in

Figure 1d�f. It is clear that the monolayer thickness is
∼0.75 nm for WS2 and ∼0.72 nm for MoS2, which
agrees well with the reported atomic force microscopy
results.19�22 The cross-sectional TEM images suggest
that the 1�3LWS2 film consists mostly of a monolayer,
while a monolayer and a bilayer coexist in the 1�3L
MoS2 film. The number of layers in the thicker samples
(initial W or Mo layer thickness: 5 and 20 nm) after
sulfurizationwasconfirmedbySE, similar toourpreviously
reported results.23 The initial nominal thicknesses of the
predeposited metal films, the thicknesses after sulfuriza-
tion, and the number of layers are listed in Table 1.
Raman spectroscopy was employed to examine the

crystallinity and number of layers. The measurements
were carried out using a Renishaw inVia Raman spec-
trometer with a laser at 488 nm. As shown in Figure 2a,
b, there are two optical phonon modes E2g

1 and A1g for
all WS2 andMoS2 films, where E2g

1 corresponds to an in-
plane opticalmode andA1g is an out-of-plane vibration
along the c-axis direction of the layers. Notably, the
Raman peaks shift with increasing number of layers.
The frequency difference between E2g

1 and A1g varies
from 63.4 to 65.3 cm�1 when the number of layers of
WS2 films increases from 1�3L to 39�41L, while it
varies from 19.4 to 26.6 cm�1 for MoS2 films from 1�3L
to 72�74L. The positions of all Raman peaks are in
good agreement with reported results.19,24�26 The
strong PL signal shown in our previous work also
indicates a good uniformity of the film.18

X-ray photoelectron spectroscopy (XPS) spectra
were recorded on a VG Scientific ESCAlab MkII system
using Al KR X-rays and an analyzer pass energy of
20 eV. In Figure 2c, the deconvolution of the W 4f and
W 5p3/2 core-level regions reveals the surface tungsten
as predominantly in WS2, with only a small component
at a lower binding energy, which indicates traces of
unsulfurized or substoichiometric W. The Mo 3d core
level in Figure 2d was successfully fitted with only one
Mo component corresponding to MoS2. Neither the
W 4f nor theMo 3d core levels show signs of significant
amounts of oxides, further indicating the high quality
of the films.
To obtain the linear absorption coefficients of the

WS2 and MoS2 films, we measured the reflection (R)
and transmission (T) spectra for wavelengths in the
500�1100 nm range using a PerkinElmer Lambda

Figure 1. (a) Photographs of 1�3L, 18�20L, and 39�41L
WS2 films and 1�3L, 25�27L, and 72�74L MoS2 films. In-
plane TEM of (b) 1�3L WS2 film and (c) 1�3L MoS2 film.
Cross-sectional TEMof the (d) 1�3L and (e) 8�10LWS2 films
and (f) 1�3L MoS2 film.

TABLE 1. Number of Layers in the WS2 and MoS2 Films

M = W, Mo X = S

initial nominal M

(nm)

measured MX2

(nm)

MX2 layer number

(L)

W 0.5 0.75�2.25 1�3
5 13.5�15.0 18�20
20 29.25�30.75 39�41

Mo 0.5 0.72�2.16 1�3
5 18�19.44 25�27
20 51.84�53.28 72�74
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1050 UV/vis/NIR spectrophotometer equipped with an
integrating sphere accessory. The absorption spectra
A were obtained via the formula A = 1 � R � T.
In Figure 2e, the transmission of the 1�3L WS2 film in
the near-infrared range is above 90%, and it decreases
steeply in the visible range, while the reflection in-
creases gradually from 1.2% at 1100 nm to 7.0% at
500 nm. The absorption in the near-infrared range far
from the exciton resonance peak is about 4%, nearly
two times larger than that of graphene (∼2.3%). The A
(636.4 nm, 1.95 eV) and B (528.2 nm, 2.35 eV) exciton
peaks for the 1�3L WS2 film can be seen from the
transmission and absorption curves. In Figure 2f, com-
pared to WS2, the transmission and reflection spectra
of the 1�3L MoS2 film exhibit relatively smooth fea-
tures, above 90% for T throughout the entire range and

from about 0.04% at 1100 nm to 0.8% at 500 nm for R.
The absorption in the near-infrared range is about
3.8%, slightly smaller than that for the WS2 film. The
exciton peaks of A (662.5 nm, 1.87 eV) and B (615.0 nm,
2.02 eV) for the 1�3LMoS2 film can also be found in the
transmission and absorption curves.
The nonlinear optical (NLO) properties of the WS2

and MoS2 films were investigated using an open
aperture Z-scan system with femtosecond laser pulses
at 1030, 800, and 515 nm. The pulse width of a fiber
laser source at 1030 nm (double frequency at 515 nm)
was ∼340 fs with a repetition rate of 100 Hz, while the
excitation laser at 800 nmwas a Ti:sapphire-type (pulse
width = 40 fs, repetition rate = 1000 Hz, Coherent Co.).
The reference beam of incident light and the trans-
mitted beam were monitored by two photodiodes as

Figure 2. Raman spectra of (a) WS2 and (b) MoS2 films and XPS of (c) WS2 and (d) MoS2 films. Transmission, reflection, and
absorption spectra of (e) 1�3L WS2 film and (f) 1�3L MoS2 film.
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the sample moved through the focus of a lens along
the laser propagation direction. The precision of the
experimental setup was confirmed by our previous
measurements of graphene/PVA films andMoS2 nano-
flake suspensions.2,3,27 For example, the figure of merit
(FOM) = |Imχ(3)/R0| of graphene/PVA films was about
(9.3 ( 4.4) � 10�15 esu cm, in a good agreement
with the reported result of ∼5.0 � 10�15 esu cm.28

Figure 3a�c shows the Z-scan data of the 1�3L,
18�20L, and 39�41L of WS2 films excited by
1030 nm (340 fs) laser pulses at different intensities.
The NLO response of the 1�3L WS2 film emerges at
2.08 GW/cm2 and the amplitude becomes maximal
(∼0.35%) at ∼38 GW/cm2. The damage threshold at
1030 nm is about 68 GW/cm2. At irradiance above this
threshold, the 1�3L WS2 film is destroyed and the
Z-scan curve increases abruptly. Figure 3a shows the
typical Z-scan curves of the 1�3L WS2 film at 1030 nm.
It is reasonable to assume that TPA occurs in the 1�3L
WS2 film as its band gap is about 1.9 eV,22 larger than
the energy of one photon (1.204 eV) but smaller than
the energy of two photons (2.408 eV) of the laser beam
at 1030 nm. Inwhat follows, this reasoning is confirmed
by the results of theoretical fitting using the nonlinear
absorptionmodel. As shown in Figure 3b,c, the 18�20L
and 39�41L WS2 films also exhibit the TPA response at
1030 nm as the band gap decreases to about 1.3 eV
when the number of layers in the WS2 films increases
toward bulk.29�31 The corresponding damage thresh-
olds are about 40 and 84 GW/cm2 for the 18�20L and

39�41L WS2 films, respectively. The minimum of nor-
malized transmission increases from ∼0.35 to ∼5.3%
when the number of layers increases from 1�3L to
39�41L, indicating the dependence of NLO response
on the number of layers.
To quantitatively determine the TPA property of the

WS2 films, the Z-scan data were fitted by assuming the
nonlinear absorption model.32

dI(z0)
dz0

¼ � R0I(z
0) � βI2(z0) (1)

where I(z0) is the laser beam irradiance within the
sample, z0 is the propagation distance in the sample,
R0 is the linear absorption coefficient of the sample,
and β is the second-order absorption coefficient.
For TPA, β is positive, while for saturable absorption
(SA), β is negative. This equation can be solved exactly,
and the normalized power transmission is

T(z) ¼ ln[1þ q0(z)]
q0(z)

(2)

where q0(z) = β(I0Leff)/(1þ z2/z0
2), Leff = (1� e�R0L)/R0 is

the sample's effective thickness, I0 is the on-axis irra-
diance at the focus, z0 is the beam's diffraction length,
and R is the reflection of the sample. It is worth noting
that the reflection is taken into account in the model
because, according to the results in Figure 2e,f, it
cannot be neglected. In eq 1, we have excluded the
second harmonic generation (SHG) effect in the WS2
andMoS2 films (odd number of layers).33�38 According

Figure 3. Z-scan results for theWS2 films with (a) 1�3L, (b) 18�20L, (c) 39�41L, and (d) corresponding TPA coefficients. Inset:
Schematic of TPA saturation (excitation laser = 1030 nm, 340 fs).
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to the results of Janisch et al.,33 the SHG conversion
efficiency of a suspended WS2 monolayer is about
10�5, which is 2�3 orders of magnitude smaller than
the variation of the normalized transmission (about
10�3 to 10�2) in our Z-scan experiments. In order to
figure out the pure SHG signal from the transmitted
beam, we placed an 850 nm short-pass filter for block-
ing the fundamental frequency beam (1030 nm). We
found that all the Z-scan curves for 1�3L, 18�20L, and
39�41L WS2 films were almost flat, indicating that the
SHG effect was negligible compared with the TPA
effect (see Supporting Information Figure S2). In addi-
tion, the TPA-generated free carrier absorption (FCA)
effect can be neglected. The critical fluence Fc (Fc =
4

ffiffiffi

2
p

pω[σ(1 � R)], where σ is the FCA absorption cross
section) for FCA effect is much lower when compared
to the onset fluence for TPA.39 According to ref 2, the
estimated Fc is ∼0.1 J/cm2, approximately 1 order of
magnitude larger than the fluence in our experiment.
The solid curves in Figure 3a�c are the fitting results

based on the nonlinear absorption model and agree
well with the experimental data. The TPA coefficients
for the 1�3L, 18�20L, 39�41L WS2 films at 1030 nm
were extracted and are shown in Figure 3d. For the
1�3LWS2film, the TPAcoefficient is∼1.34� 105 cm/GW
at ∼2.08 GW/cm2, and it decreases monotonically
to ∼1.06 � 104 cm/GW at ∼38 GW/cm2. This reduc-
tion is ascribed to the saturation of TPA, and it
will be discussed in detail in what follows. For the
18�20L and 39�41L WS2 films, they turn out to be

indirect semiconductors and at all intensities the
TPA coefficients remain nearly constant, ∼3280 and
2750 cm/GW, respectively. Notably, the TPA coefficient
of the 1�3L WS2 film is about 1 order of magnitude
larger than those of the 18�20L and 39�41LWS2 films,
which is probably due to the transition from direct to
indirect band gap caused by an interlayer interaction.
Compared with many other bulk semiconductors such
as ZnTe, CdTe, GaAs, and ZnO, the TPA coefficients of
monolayer and few-layer WS2 films at 1030 nm are
about∼103 to 104 times larger40,41 and are comparable
to monolayer and bilayer graphene at ∼1 μm.42 It is
worth noting that the TPA coefficient of WS2 films does
not obey the scaling rule applicable to many semicon-
ductors, as proposed by Van Stryland.40 This is attrib-
uted to the 2D confinement of layered WS2, a giant
exciton effect,43,44 and the resonance of TPA near the
band edge.
To investigate the wavelength dependence of NLO

response of the WS2 films, we obtained the Z-scan
results at 800 nm (40 fs) and 515 nm (340 fs). As shown
in Figure 4a, the NLO responses of the 1�3L and
18�20L WS2 films at 800 nm (1.55 eV) are obviously
different. The 1�3L WS2 film retains TPA behavior the
same as that at 1030 nm, but the 18�20L film exhibits
the SA response. The TPA excitation irradiance for the
1�3LWS2 film at 800 nm is larger than that at 1030 nm
by about 1 order of magnitude. It may be due to the
larger shift from TPA resonance of the band edge at
800 nm. The SA behavior of the 18�20L sample implies

Figure 4. Z-scan results (a) and nonlinear absorption coefficients (b) for WS2 films with 1�3L and 18�20L at 800 nm (40 fs).
Z-scan results (c) and SA coefficients (d) for 1�3L WS2 at 515 nm (340 fs).
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that its band gap is smaller than 1.55 eV, and the SA
induced by one-photon absorption takes place. The
damage thresholds of the 1�3L and 18�20L WS2
films at 800 nm are close to 392 and 156 GW/cm2,
respectively. The experimental data are fitted by
the nonlinear absorption model mentioned above.
The obtained TPA and SA coefficients are shown in
Figure 4b, showing a weak saturation effect similar to
that for the 1�3LWS2 film at 1030 nm. In Figure 4c, the
1�3L WS2 film at 515 nm (2.408 eV) starts to exhibit
the SA behavior at a much lower irradiance, which is
caused by one-photon absorption, as well.
Figure 5 shows the dependence of NLO response on

the number of layers and excitation wavelength for the
25�27L and 72�74L MoS2 films at 1030 and 800 nm.
Similar to theWS2 films, the band gap of theMoS2 films
also decreases with increasing number of layers, from
1.90 eV for themonolayer to 1.29 eV for the bulk.45,46 In
Figure 5a,b, at 1030 nm, the 25�27L MoS2 film exhibits
TPA behavior, whereas the behavior of the 72�74L one
changes to SA at a lower irradiance induced by one-
photon absorption. This implies that the band gap of
the 25�27L MoS2 film is larger than 1.55 eV, while that
of the 72�74L one is smaller. The damage thresholds
of the 25�27L and 72�74L MoS2 films at 1030 nm
are close to ∼360 and ∼86 GW/cm2, respectively. In
Figure 5c, at 800 nm, the 25�27L MoS2 film still ex-
hibits the TPA behavior, but the excitation irradiance
is much larger than that at 1030 nm in Figure 5a.

This phenomenon also reveals that the ON/OFF reso-
nance of TPA near the band edge plays an important
role in the NLO response. The damage threshold of the
25�27L MoS2 film at 800 nm is close to∼888 GW/cm2.
The TPA coefficients of the 25�27L MoS2 film at 1030
and 800 nm are shown in Figure 5d. At 1030 nm, it
decreases monotonically from 210 to 34.7 cm/GW due
to the TPA saturation. The TPA coefficient at 1030 nm is
larger than that at 800 nm for the 25�27L MoS2 film
and remains nearly constant at ∼11.4 cm/GW at
800 nm, confirming the importance of resonance for
NLO response. The SA coefficient of the 72�74L MoS2
film at 1030 nm is about�250( 50 cm/GW, as shown
in Figure 5d.
In eq 1, the nonlinear absorption coefficient β is

assumed to be independent of the irradiance, and this
is valid only at low intensities. When the TPA saturation
occurs, the nonlinear absorption coefficient is sup-
posed to be dependent on the irradiance. The TPA
saturation of the WS2 and MoS2 films can be well fitted
by using a hyperbolic saturation model for semi-
conductors:47,48

β(I) ¼ β0
1þ I=Isat

(3)

where β0 is the low irradiance response of the material
and Isat is the saturation irradiance of TPA for which β0
is divided by 2.With eq 3, we can solve eq 1 numerically
and obtain the relationship between the reciprocal

Figure 5. Z-scan results for the MoS2 films with (a) 25�27L, (b) 72�74L (excitation laser = 1030 nm, 340 fs), and (c) 25�27L
(excitation laser = 800 nm, 40 fs). (d) Corresponding nonlinear absorption coefficients.
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transmission 1/T and irradiance. Figure 6a,b shows
reciprocal transmission versus irradiance of the 1�3L
WS2 film and 25�27L MoS2 film, respectively. The solid
squares denote themeasured data. The solid line is the
theoretical variation for a hyperbolic irradiance depen-
dence of the TPA coefficient, whereas the dashed line is
the theoretical variation for a constant TPA coefficient.
From the fits, we obtain β0 = β(I , Isat) = (1.0 ( 0.8) �
104 cm GW�1, Isat = 26 GW cm�2 for the 1�3L WS2 film
and β0 = 66 ( 4 cm GW�1, Isat = 130 GW cm�2 for the
25�27L MoS2 film at 1030 nm. The TPA coefficient of
the 25�27L MoS2 film is much smaller than that of
the monolayer MoS2, (7.62 ( 0.15) � 103 cm GW�1.49

Recently, MoS2 andWS2 films have been demonstrated
successfully as saturable absorbers formode-locking or
Q-switching in ultrafast fiber lasers over a broad wave-
length range (1, 1.5, and 2 μm). However, the mechan-
ism of such a saturable absorber working below the
band gap is still unclear. Wang5 and Woodward et al.50

ascribed it to defect state or edge state saturable
absorption. On the basis of our results, it is reasonable
to deduce that the TPA saturation should be easier to
achieve for fewer-layer films, and itmight be one factor

for the monolayer and few-layer WS2 and MoS2 work-
ing as saturable absorbers below the band gap.
Table 2 summarizes the linear andNLO parameters of

the WS2 and MoS2 films measured by using the Z-scan
technique. The imaginary part of the third-order NLO
susceptibility Imχ(3) can be approximately expressed:2

Im χ(3) ¼ 10�7cλn2

96π2
β (4)

where c is the speed of light, λ is the wavelength of the
incident light, and n is the refractive index. The linear
refractive indices of theWS2 andMoS2 films at 1030 nm
were obtained from a Cauchy dispersion formula
based on the results of Li et al.51 The figure of merit
was defined for eliminating the discrepancy caused by
the linear absorptionR0: FOM= |Imχ(3)/R0|. Imχ(3) of the
1�3L WS2 film at 1030 nm is (4.0 ( 3.6) � 10�8 esu,
about 3-fold larger than the values for 18�20L and
39�41L ones. Imχ(3) of the 1�3L WS2 film at 800 nm is
1 order of magnitude smaller than that at 1030 nm,
indicating the OFF resonance of TPA near the band
edge. Imχ(3) changes from positive to negative for the
18�20L WS2 film due to the transition from TPA to SA.

Figure 6. Reciprocal transmission versus irradiance of (a) 1�3L WS2 film and (b) 25�27L MoS2 film. Solid squares are the
measured data. Solid line: theoretical variation for a hyperbolic irradiance dependence of the TPA coefficient. Dashed line:
theoretical variation for a constant TPA coefficient.

TABLE 2. Linear and NLO Parameters of Few-Layer WS2 and MoS2 Films Measured Using the Z-Scan Technique

laser sample T (%) R0 (cm
�1)

NLO

response β (cm GW�1)

Isat of TPA

(GW cm�2) Imχ(3) (esu) FOM (esu cm)

damage

threshold

Id (GW cm�2)

1030 nm, 1 kHz,
340 fs

1�3L WS2 94.76 7.17 � 105 TPA (1.0 ( 0.8) � 104 26 (4.0 ( 3.6) � 10�8 (1.1 ( 1.0) � 10�13 ∼68

18�20L WS2 42.64 5.98 � 105 TPA (3.28 ( 0.11) � 103 N/A (1.29 ( 0.04) � 10�8 (2.16 ( 0.08) � 10�14 ∼40
39�41L WS2 7.65 8.57 � 105 TPA (2.75 ( 0.10) � 103 N/A (1.10 ( 0.04) � 10�8 (1.28 ( 0.05) � 10�14 ∼84
25�27L MoS2 92.96 3.90 � 104 TPA 66 ( 4 130 (4.2 ( 0.2) � 10�10 (1.10 ( 0.03) � 10�14 ∼360
72�74L MoS2 37.01 1.89 � 105 SA �250 ( 50 N/A (�1.50 ( 0.33) � 10�9 (7.96 ( 1.68) � 10�15 ∼86

800 nm, 1 kHz,
40 fs

1�3L WS2 92.21 1.08 � 106 TPA 525 ( 205 N/A (2.72 ( 0.83) � 10�9 (2.51 ( 0.77) � 10�15 ∼392

18�20L WS2 35.75 7.22 � 105 SA �397 ( 40 N/A (�1.78 ( 0.16) � 10�9 (2.47 ( 0.23) � 10�15 ∼156
25�27L MoS2 88.98 6.24 � 104 TPA 11.4 ( 4.3 N/A (5.26 ( 2.46) � 10�11 (8.43 ( 3.95) � 10�16 ∼888

515 nm, 1 kHz,
340 fs

1�3L WS2 67.80 5.18 � 106 SA (�2.9 ( 1.0) � 104 N/A (�8.44 ( 3.80) � 10�8 (1.63 ( 0.73) � 10�14 ∼6.2
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The FOM exhibits similar behavior. For the 25�27L
MoS2 film at 1030 nm, Imχ(3) is (4.2( 0.2)� 10�10 esu,
about 1 order of magnitude larger than that at 800 nm,
which is also ascribed to the band edge TPA resonance.
For the 72�74L MoS2 film, it becomes negative at
1030 nm due to SA.

CONCLUSIONS

In conclusion, we investigated the optical non-
linearity of monolayer and few-layer WS2 and MoS2
films by using the Z-scan technique at 1030, 800, and
515 nm with femtosecond pulses. The 2D 1�3L WS2

film exhibits giant optical nonlinearities with a TPA
coefficient of (1.0 ( 0.8) � 104 cm/GW. The nonlinear
absorption of few- and multilayer WS2 and MoS2
films and their excitation wavelength dependences
were studied. The saturation of TPA was observed
for the 1�3L WS2 film and 25�27L MoS2 film. The
giant nonlinearity of WS2 and MoS2 films was
ascribed to the 2D confinement, giant exciton effect,
and the band edge resonance of TPA. The damage
thresholds of the WS2 and MoS2 films were also
estimated to support potential device application in
the future.

METHODS
Spectroscopic Ellipsometry. Spectroscopic ellipsometrywas em-

ployed to measure the thicknesses of MoS2 and WS2 films.23,52

An Alpha SE tool (J.A. Woollam Co., Inc.) was used, and SE data
were obtained in the wavelength range of 380�900 nm at 65
and 70� angles of incidence, with a beam spot size of∼40mm2.
The SE spectra were analyzed by using vender-supplied soft-
ware, CompleteEASE 4.72 (J.A. Woollam Co., Inc.).

The measured SE spectra consist of psi (Ψ) and delta (Δ)
components, which represent the amplitude ratio (Ψ) and
phase difference (Δ) between p- and s-polarizations, respec-
tively. The two parameters are related to the ratio F, defined
by the equation of F = rp/rs = tan(Ψ)exp(iΔ), where rp and rs are
the amplitude reflection coefficients for the p-polarized and
s-polarized light, respectively.53

Optical models built for SE analysis have a four-layered
structure, where there are three sublayers (a Si substrate, an
interface layer between the Si and SiO2 layers, and a SiO2 layer)
and a top material layer (MoS2 or WS2). The Tauc-Lorentz
oscillation model was used to determine the thicknesses of
the MoS2/WS2 thin films.54
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